Tính a^4 + b^4 + c^4 biết a+b+c =0 và a^2 + b^2 +c^2 =2

I tried lớn solve this problem, & I get $a^4+b^4+c^4 = 2(a^2b^2 + 1)$ but I"m not sure if it"s correct


*

$egingroup$ it would be better if you can write how did you get that part, then some toàn thân can trace errors (if there are any)... $endgroup$
Given $a+b+c = 0$ and $(a^2+b^2+c^2) = 1$, Now $(a^2+b^2+c^2)^2 = 1^2 = 1$

$(a^4+b^4+c^4)+2(a^2b^2+b^2c^2+c^2a^2) = 1.................(1)$

and from $(a+b+c)^2 = 0$,

we get $displaystyle 1+2(ab+bc+ca) = 0Rightarrow (ab+bc+ca) = -frac12$

again squaring both side , we get $displaystyle (ab+bc+ca)^2 = frac14$

$displaystyle (a^2b^2+b^2c^2+c^2a^2)+2abc(a+b+c) = frac14Rightarrow (a^2b^2+b^2c^2+c^2a^2) = frac14$

So put in eqn.... $(1)$ , we get

$displaystyle (a^4+b^4+c^4)+2cdot frac14 = 1Rightarrow (a^4+b^4+c^4) = frac12$


Share
Cite
Follow
answered Oct 13 "13 at 8:38
*

juantheronjuantheron
49.7k1313 gold badges8080 silver badges210210 bronze badges
$endgroup$
1
Add a bình luận |
3
$egingroup$
$$a+b+c=0Rightarrow c=-(a+b)$$$$1=a^2+b^2+(a+b)^2=2a^2+2ab+2b^2=2(a^2+ab+b^2)Rightarrow a^2+ab+b^2=frac12$$$$eginalign*a^4+b^4+c^4 &= a^4+b^4+(a^4+4a^3b+6a^2b^2+4ab^3+b^4)\&= 2(a^4+2a^3b+3a^2b^2+2ab^3+b^4)\&= 2(a^2(a^2+ab+b^2)+b^2(a^2+ab+b^2)+ab(a^2+ab+b^2))\&= a^2+ab+b^2=frac12endalign*$$


Share
Cite
Follow
answered Oct 13 "13 at 8:43
*

Dennis GulkoDennis Gulko
15k11 gold badge3131 silver badges5555 bronze badges
$endgroup$
Add a bình luận |
0
$egingroup$
Given a+b+c=0a+b+c=0 & (a2+b2+c2)=1(a2+b2+c2)=1, Now (a2+b2+c2)2=12=1(a2+b2+c2)2=12=1(a4+b4+c4)+2(a2b2+b2c2+c2a2)=1.................(1)(a4+b4+c4)+2(a2b2+b2c2+c2a2)=1.................(1)và from (a+b+c)2=0(a+b+c)2=0,

we get 1+2(ab+bc+ca)=0⇒(ab+bc+ca)=−121+2(ab+bc+ca)=0⇒(ab+bc+ca)=−12again squaring both side , we get (ab+bc+ca)2=14(ab+bc+ca)2=14(a2b2+b2c2+c2a2)+2abc(a+b+c)=14⇒(a2b2+b2c2+c2a2)=14(a2b2+b2c2+c2a2)+2abc(a+b+c)=14⇒(a2b2+b2c2+c2a2)=14So put in eqn.... (1)(1) , we get

(a4+b4+c4)+2⋅14=1⇒(a4+b4+c4)=12


Share
Cite
Follow
answered Aquảng cáo 18 "16 at 14:15
*

Aman sengarAman sengar
1
$endgroup$
1
Add a bình luận |

Your Answer


Thanks for contributing an answer to bachgiamedia.com.vnematics Stack Exchange!

Please be sure to answer the question. Provide details & mô tả your research!

But avoid

Asking for help, clarification, or responding to lớn other answers.Making statements based on opinion; back them up with references or personal experience.

Bạn đang xem: Tính a^4 + b^4 + c^4 biết a+b+c =0 và a^2 + b^2 +c^2 =2

Use bachgiamedia.com.vnJax lớn format equations. bachgiamedia.com.vnJax reference.

Xem thêm: Công Nghệ Trị Mụn Ở Saigon Smile Spa, Trị Mụn Hiệu Quả 100%

To learn more, see our tips on writing great answers.


Draft saved
Draft discarded

Sign up or log in


Sign up using Google
Sign up using Facebook
Sign up using Email và Password
Submit

Post as a guest


Name
Email Required, but never shown


Post as a guest


Name
Email

Required, but never shown


Post Your Answer Discard

By clicking “Post Your Answer”, you agree khổng lồ our terms of service, privacy policy and cookie policy


Not the answer you're looking for? Browse other questions tagged algebra-precalculus or ask your own question.


The Overflow Blog
Featured on Meta
Linked
19
Finding the fraction $fraca^5+b^5+c^5+d^5a^6+b^6+c^6+d^6$ when knowing the sums $a+b+c+d$ to $a^4+b^4+c^4+d^4$
12
$ a+b+c=0, a^2+b^2+c^2=1$ implies $ a^4+b^4+c^4=frac12$
Related
1
Is there a way to factor $uv-u-v-1$?
2
Confusion: I can solve rate problem using "1 pool per $a$ hours", but not "$a$ hours per pool".
1
Method for solving the equation $3 + 5x^1/2 = 2x$?
0
Riddle to solve. Grouping of integers.
0
What does it mean lớn be equal?
0
Solving the equation $2^2x - 2^x - 2 = 0$
0
2 degree polynomial problem
2
What type of equation is this called?
1
If $log_ax=3$ & $log_bx=4$, then what is $log_abx$?
Hot Network Questions more hot questions

Question feed
Subscribe lớn RSS
Question feed To subscribe to this RSS feed, copy & paste this URL inkhổng lồ your RSS reader.


*

bachgiamedia.com.vnematics
Company
Staông xã Exchange Network
site design / logo sản phẩm © 2022 Stack Exchange Inc; user contributions licensed under cc by-sa. rev2021.12.22.41046


bachgiamedia.com.vnematics Staông chồng Exchange works best with JavaScript enabled
*

Your privacy

By clicking “Accept all cookies”, you agree Staông xã Exchange can store cookies on your device and discthua trận information in accordance with our Cookie Policy.